

# Three Phase Sinusoidal Sensorless Fan Controller

#### FEATURES AND BENEFITS DESCRIPTION The A5932 three phase motor controller incorporates Sinusoidal Drive For Low Vibration and Noise sinusoidal drive to minimize audible noise and vibration for Configurable Closed Loop Speed Curves high power fans. RD Output Quiet Startup A sinusoidal voltage profile is applied to the windings of the Proprietary High Efficiency Control Algorithm motor at startup to quietly startup and gradually ramp up the Automatic Phase Advance motor to desired speed. Windmill Detection The motor speed is controlled by applying a Duty cycle Fault Output command to the SPD input. The speed input is allowed to FG Speed Output operate over a wide frequency range. Lock Detection Overcurrent Limit (OCL) The A5932 is available in a 24L ETSSOP package, suffix Short Circuit Protection (OCP) "LP", and a 24Lead QFN, suffix "ES". Direction Input Brake Input Adjustable Gate Drive



**Typical Application** 



### SELECTION GUIDE

| Part Number  | Ambient<br>Temperature | Package    | Packing                     |  |  |
|--------------|------------------------|------------|-----------------------------|--|--|
| A5932GLPTR-T | -40 to 105C            | 24L eTSSOP | 4000 pieces per 13-in. reel |  |  |
| A5932GESSR-T | -40 to 105C            | 24L eQFN   | 6000 pieces per 13-in. reel |  |  |

### **ABSOLUTE MAXIMUM RATINGS**

| Parameter                                      | Symbol          | Conditions                           | Min.              | Тур. | Max.                | Units |
|------------------------------------------------|-----------------|--------------------------------------|-------------------|------|---------------------|-------|
| Supply Voltage                                 | V <sub>BB</sub> |                                      |                   |      | 50                  | V     |
| Logic Input Voltage Range<br>(SPD, BRAKE, DIR) | V <sub>IN</sub> |                                      | 3                 |      | 6                   | V     |
| Logic Output – FG, RD, nFAULT                  | Vo              | FG (I<5mA)                           |                   |      | 6                   | V     |
| LSS                                            | VLSS            | DC                                   | -500              |      | 500                 | mV    |
|                                                |                 | Tw <500ns                            | -4                |      | 4                   | V     |
| Output Voltage                                 | Vout            | SA,SB,SC                             | -2                |      | V <sub>BB</sub> +2  | V     |
| СТАР                                           | Vctap           | DC                                   | 6                 |      | Vbb+.6              | V     |
|                                                |                 | Tw <500ns                            | -2                |      | V <sub>BB</sub> +2  |       |
| GHx                                            | Vgh             |                                      | Sx3               |      | V <sub>CP</sub> +.3 | V     |
| GLx                                            | Vgl             |                                      | LSS3              |      | 8.5                 | V     |
| VCP                                            |                 |                                      | V <sub>BB</sub> 3 |      | V <sub>BB</sub> +8  | V     |
| CP1                                            |                 |                                      | 3                 |      | V <sub>BB</sub> +.3 | V     |
| CP2                                            |                 |                                      | V <sub>BB</sub> 3 |      | V <sub>CP</sub> +.3 | V     |
| ISET                                           |                 |                                      | 3                 |      | 5.5                 | V     |
| Junction Temperature                           | Tj              |                                      |                   |      | 150                 | °C    |
| Storage Temperature Range                      | Ts              |                                      | -55               |      | 150                 | °C    |
| Operating Temperature Range                    | Та              |                                      | -40               |      | 105                 | °C    |
| Package Thermal Resistance                     |                 |                                      |                   |      |                     |       |
| LP                                             | Rja             | 2 sided PCB 1 in <sup>2</sup> Copper |                   | 36   |                     | °C/W  |
| ES                                             |                 | 1                                    |                   | 45   |                     | °C/W  |



### **TERMINAL LIST**

| LP | QFN | Pin Name | Pin Description     |  |  |  |  |
|----|-----|----------|---------------------|--|--|--|--|
| 1  | 16  | CP2      | Charge Pump         |  |  |  |  |
| 2  | 17  | CP1      | Charge Pump         |  |  |  |  |
| 3  | 18  | BRAKE    | Logic Input         |  |  |  |  |
| 4  | 19  | VREF     | Logic Supply Output |  |  |  |  |
| 5  | 20  | SPD      | Speed Input         |  |  |  |  |
| 6  | 21  | DIR      | Logic Output        |  |  |  |  |
| 7  | 22  | RD       | Speed Output        |  |  |  |  |
| 8  | 23  | FG       | Speed Output        |  |  |  |  |
| 9  | 24  | nFAULT   | Logic Output        |  |  |  |  |
| 10 | 1   | ISET     | Analog Input        |  |  |  |  |
| 11 | 2   | GND      | Ground              |  |  |  |  |
| 12 | 3   | GLA      | Gate Drive Output   |  |  |  |  |
| 13 | 4   | GLB      | Gate Drive Output   |  |  |  |  |
| 14 | 5   | GLC      | Gate Drive Output   |  |  |  |  |
| 15 | 6   | LSS      | Low Side Source     |  |  |  |  |
| 16 | 7   | SA       | Motor Output        |  |  |  |  |
| 17 | 8   | GHA      | Gate Drive Output   |  |  |  |  |
| 18 | 9   | SB       | Motor Output        |  |  |  |  |
| 19 | 10  | GHB      | Gate Drive Output   |  |  |  |  |
| 20 | 11  | SC       | Motor Output        |  |  |  |  |
| 21 | 12  | GHC      | Gate Drive Output   |  |  |  |  |
| 22 | 13  | CTAP     | Motor Common        |  |  |  |  |
| 23 | 14  | VCP      | Charge Pump         |  |  |  |  |
| 24 | 15  | VBB      | Power Supply        |  |  |  |  |



### ELECTRICAL CHARACTERISTICS (unless noted otherwise)

G version: valid for TA = 25°C

| Characteristics                | Symbol              | Test Conditions                                    | Min.  | Тур. | Max.              | Units |
|--------------------------------|---------------------|----------------------------------------------------|-------|------|-------------------|-------|
| Load Supply Voltage Range      | VBB                 | Driving                                            |       |      | V <sub>BBOV</sub> | V     |
|                                |                     | Operating                                          |       |      | 50                | V     |
| VBB Supply Current             | I <sub>BB</sub>     | I <sub>VREF</sub> =0mA                             |       | 11   | 15                | mA    |
|                                |                     | Standby Mode                                       |       | 5    | 20                | μA    |
| VREF                           | V <sub>REF</sub>    | I <sub>OUT</sub> =20mA                             | 2.75  | 2.86 | 2.95              | V     |
| VREF Current Limit             | V <sub>REFOCL</sub> | V <sub>REF</sub> =0V                               | 30    | 50   | 80                | mA    |
| Charge Pump                    | V <sub>CP</sub>     | VBB=8V, Relative To $V_{BB}$                       | 6.5   | 7    | 7.5               | V     |
|                                |                     | VBB=5.5V                                           | tbd   | 5    |                   | V     |
| Gate Drive                     |                     |                                                    |       |      |                   |       |
| High Side Gate Drive Output    | V <sub>GH</sub>     | VBB=8V                                             | 6.5   | 7    |                   | V     |
| Low Side Gate Drive Output     | $V_{GL}$            | VBB=8V                                             | 6.5   | 7    |                   | V     |
| Gate Drive Source Current      | I <sub>so</sub>     | Relative to target, R <sub>ISET</sub> =15K to 150K | -25   |      | 25                | %     |
| Gate Drive Sink Current        | I <sub>SI</sub>     | Relative to target, R <sub>ISET</sub> =15K to 150K | -25   |      | 25                | %     |
| Gate Drive Source Current      | I <sub>so</sub>     | R <sub>ISET</sub> =GND                             |       | 32   |                   | mA    |
| Gate Drive Sink Current        | I <sub>SI</sub>     | R <sub>ISET</sub> =GND                             |       | 60   |                   | mA    |
| Motor Drive                    |                     |                                                    |       |      |                   |       |
| PWM Duty On Threshold          | DC <sub>ON</sub>    | Relative to Target                                 | .5    |      | .5                | %     |
| PWM Duty OFF Threshold         | DC <sub>OFF</sub>   | Relative to Target                                 | .5    |      | .5                | %     |
| PWM Input Frequency Range      | F <sub>PWM</sub>    |                                                    | .1    |      | 100               | kHz   |
| SPD Standby Threshold (Analog) | SPDTH               |                                                    | .5    | .75  | 1                 | V     |
| SPD On threshold               | SPD <sub>ON</sub>   | DCON = 10.2%                                       | 220   | 250  | 280               | mV    |
| SPD Max                        | SPD <sub>MAX</sub>  |                                                    |       | 2.5  |                   | V     |
| SPD ADC Resolution             |                     |                                                    |       | 4.89 |                   | mV    |
| SPD ADC Accuracy               |                     | SPD = .2V to 2.5V                                  |       | +/-6 |                   | LSB   |
| Speed Setpoint                 | F <sub>SPD</sub>    | PWM Mode                                           | -4    |      | 4                 | %     |
| Dead Time t <sub>DT</sub>      |                     | Code=10                                            |       | 480  |                   | ns    |
| Motor PWM Frequency            | f <sub>PWM</sub>    |                                                    | 23.67 | 24.4 | 25.15             | kHz   |

1. Specified limits are tested at a single temperature and assured over operating temperature range by design and characterization

2. Gate Drive Output characteristics are valid from 5.5V to VBBOV



# ELECTRICAL CHARACTERISTICS (unless noted otherwise) G version: valid for TA = $25^{\circ}$ C

| Characteristics                  | Symbol               | Test Conditions                    | Min. | Тур. | Max. | Units |
|----------------------------------|----------------------|------------------------------------|------|------|------|-------|
| Protection                       |                      |                                    |      |      |      |       |
| VBB UVLO                         | VBB <sub>UVLO</sub>  | V <sub>BB</sub> rising             |      | 4.75 | 4.95 | V     |
| VBB UVLO HYS                     | VBB <sub>HYS</sub>   |                                    | 200  | 300  | 450  | mV    |
| VBB Overvoltage Threshold        | VBB <sub>ov</sub>    | Relative to target                 | -4   |      | 4    | %     |
| VBB Overvoltage Hystersis        | VBB <sub>OVHYS</sub> |                                    |      | 2    |      | V     |
| OverCurrent Threshold            | V <sub>OCL</sub>     |                                    | 240  | 250  | 260  | mV    |
| VREF UVLO                        | VREF <sub>UVLO</sub> | falling                            |      | 2.6  |      | V     |
| VCP UVLO                         | VCP <sub>UVLO</sub>  | falling                            |      | 3.9  |      | V     |
| Lock Timing                      | TLOCK                | Relative to Target                 | -4   |      | 4    | %     |
| Thermal Shutdown Temp.           | T <sub>JTSD</sub>    | Temperature increasing             | 150  | 170  | 190  | °C    |
| Thermal Shutdown Hysteresis      | ΔTJ                  | Recovery = $T_{JTSD} - \Delta T_J$ |      | 20   |      | °C    |
|                                  |                      |                                    |      |      |      |       |
| Logic/Input Output/I2C           |                      |                                    |      |      |      |       |
| Input Current (SPD,FG)           | I <sub>IN</sub>      | Vin=0 to 5.5V                      | -5   | <1   | 5    | uA    |
| Input Current (BRK, DIR)         | I <sub>IN</sub>      | Vin= 5V                            |      | 50   |      | uA    |
| Logic Input Low Level            | VIL                  |                                    | 0    |      | .8   | V     |
| Logic Input High Level           | V <sub>IH</sub>      |                                    | 2    |      | 5.5  | V     |
| Logic Input Hysteresis           | V <sub>HYS</sub>     |                                    | 200  | 300  | 600  | m∨    |
| Output Sat Voltage               | V <sub>SAT</sub>     | I=5mA                              |      |      | .3   | V     |
| FG,RD, nFAULT Output Leakage     | I <sub>FG</sub>      | V=6V                               |      |      | 1    | uA    |
| SCL Clock Frequency              | fclк                 |                                    | 3    | -    | 400  | kHz   |
| I2C timing                       |                      |                                    |      |      |      |       |
| Bus Free Time Between Stop/Start | tBUF                 |                                    | 1.3  | -    | -    | μs    |
| Hold Time Start Condition        | thd:sta              |                                    | 0.6  | -    | -    | μs    |
| Setup Time for Start Condition   | tsu:sta              |                                    | 0.6  | _    | -    | μs    |
| SCL Low Time                     | t∟ow                 |                                    | 1.3  | -    | -    | μs    |
| SCL High Time                    | tнigн                |                                    | 0.6  | -    | -    | μs    |
| Data Setup Time                  | tsu:dat              |                                    | 100  | _    | -    | ns    |
| Data Hold Time                   | thd:dat              |                                    | 0    | _    | 900  | ns    |
| Setup Time for Stop Condition    | tsu:sto              |                                    | 0.6  | _    | _    | μs    |

1. Specified limits are tested at a single temperature and assured over operating temperature range by design and characterization.



### **Functional Description**

The A5932 targets high speed server fan applications to meet the objectives of low audible noise, minimal vibration, and high efficiency. Allegro's proprietary control algorithm results in a sinusoidal current waveshape that adapts to a variety of motor characteristics to dynamically optimize efficiency across a wide range of speeds.

The speed of the fan is controlled by variable duty cycle PWM input.

The PWM input duty is measured and converted to a 9bit number. This 9 bit "demand" is applied to a pwm generator block to create the modulation profile. The

modulation profile is applied to the three motor outputs, with 120 degree phase relationship, to create the sinusoidal current waveform as shown in Figure 1.

Protection features include lock detection with restart. motor output short circuit, supply undervoltage monitor and thermal shutdown.

Standby mode can be achieved by holding SPD pin low for longer than the programmed Lock off-time. In specific speed curve options, the motor will never turn off with 0% duty cycle applied. In this type of configuration, standby mode is not available.





### **Functional Description**

**VREF**. Voltage reference (2.8V) to power internal digital logic and analog circuitry.  $V_{REF}$  can be used to power external circuitry with up to 20mA bias current if desired. Stabilize with .1uF or greater ceramic capacitor.

**FG.** Open drain output provides speed information to the system. The open drain output can be pulled up to  $V_{\text{REF}}$  or external 3.3 or 5V supply.

### RD.

Open drain output, Logic high indicates a rotor fault condition as defined by EEPROM variables. RD function can be disabled via EEPROM. When function is disabled RD pin low to high transition indicates end of open loop starting sequence.

**BRAKE.** Active High signal turns on all low sides for braking function. Brake Function will prevent IC from entering standby mode. Brake function overrides Speed control input. Care should be taken to avoid stress on the MOSFET when braking while motor is running. With braking the current will be limited by V<sub>BEMF</sub>/R<sub>MOTOR</sub>.

**DIR.** Logic Input to control motor direction. For logic high, motor phases are ordered  $A \rightarrow B \rightarrow C$ . For logic low  $A \rightarrow C \rightarrow B$ . If Direction input is changed while motor running, motor will coast for a duration defined by T\_Coast. After this delay, motor will then attempt to restart in desired direction.

**ISET.** A resistor ( $R_{ISET}$ ) to GND sets the magnitude of gate current. The sink and source current ratios are fixed at approximately 2:1. Resistor value RISET should be in the range 15K to 150K.

The formula for gate drive current is as follows:

$$\begin{split} I_{GATE\_SRC}(mA) &= 1.9 + 900/R_{ISET} \, (Kohms) \\ I_{GATE\_SNK}(mA) &= 3.5 + 1700/R_{ISET} \, (Kohms) \end{split}$$

If pin ISET is connected to GND, the circuit will default to a level equivalent to 30K. If ISET is open, the motor outputs will be disabled.

**CTAP.** This analog input is an optional connection for motor common (Wye motors). If not used, as in case of Delta wound motor, then pin must be left open circuit. Speed

**SPD.** Speed Demand input pin. Choice of analog voltage control or PWM duty control is determined by EEPROM selection.

Duty cycle control. The PWM frequency must be in the range 100Hz to100kHz. Duty cycle resolution is 9Bit.

Analog control. Voltage applied will increase speed demand. An internal 9 bit A/D converter will translate the input to a speed demand.

**Standby Mode.** A low power mode is activated if SPD pin is held low. Standby Mode will turn off all circuitry including charge pump and VREF. Upon power up, the A5932 will immediately wake up. If SPD remains low for the programmed lock time, standby mode will be activated. Standby mode can be disabled via EEPROM bit.

**Lock Detect.** A logic circuit monitors the motor position to determine if motor is running as expected. If a fault is detected, the motor drive will be disabled for  $T_{LOCK}$  before an auto-restart is attempted.

**Current Limit.** Maximum load current can be set by choice of external sense resistor connected between LSS terminal and GND.

ILIM = 250mV/RSENSE



High-Performance Semiconductors

**nFAULT**. The following signals will bring output nFAULT low:

- 1) VBB Undervoltage
- 2) Thermal Shutdown
- 3) Charge Pump UVLO
- 4) VBB Overvoltage
- 5) Output Vds Fault (OCP)
- 6) Loss of synchronization

| Fault            | Fault Action                            | Latched    | Readback |
|------------------|-----------------------------------------|------------|----------|
|                  |                                         |            | Reg[Bit] |
| Vbb Undervoltage | Disable Outputs                         | N          | 147[8]   |
| TSD              | Disable Outputs                         | N          | 147[6]   |
| Charge Pump      | Disable Outputs                         | N          | 147[7]   |
| Vbb Overvoltage  | Disable Outputs or disabled outputs and | N          | 147[9]   |
|                  | set Lock detect                         |            |          |
| VDS Fault        | Choose by EEPROM bit OCPOPT             | If OCPOP=1 | 147[5:0] |
| Loss of Sync     | Set Lock detect timeout                 | N          | 148[6:0] |



**Speed Control Options.** 



Figure 1) Speed Curve Options



Figure 2) Speed Curve Options - 2







#### Speed Curve Parameters (continued)

Refer to Figure 1-3 for below items.

#### Minimum Speed Set point.

The minimum speed is defined by the value stored in EEPROM variable MINSPD. The resolution is 1RPM.

MINSPD (RPM) = 0..4095

#### Maximum Speed Set point.

The A5932 calculates the maximum speed based on line equation y=mx + B. The maximum speed is defined as the speed with input duty = 100%.

The desired maximum speed is used to set the EEPROM variable SPDSLP.

SPDSLP = 64\*(Maximum Speed (Rpm) - MINSPD)/511

Example: Max Speed = 25000, Min Speed = 3000.

SPDSLP = 64\*22000/511 = 2755

Where SPDSLP = 0..16383

Motor Speed (RPM) = Slope\*DutyIN + MINSPD.

Where Slope = SPDSLP\*511/64 and DutyIN expressed in %.

#### Duty In Enable Threshold.

EEPROM variable DCON defines the input duty signal that enables the drive. DCON is a 8 bit number with resolution of .2%, which results in a max setting of 49.9%.

Duty On (%) = 100\*DCON/511

If DCON is set to "0", motor will turn on with 0% duty cycle input.

#### Duty In Disable Threshold.

EEPROM variable DCOFF defines the input duty signal that disables the drive. DCOFF is an 8 bit number with resolution of .2%, which results in a max setting of 49.9%.

#### Duty Off(%) = DCOFF/511

DCOFF should always be set to a lower number than DCON.

#### **ON/Off Control Option.**

If bit ONOFFCNTRL bit is set to "1" then the motor will runs off if duty is between the values set by DCON & DCOFF. A fixed value of .8% hysteresis is applied. In this option, if the duty is below DCOFF, then the motor will be enabled with a PWM level set by variable MAXDTYOFF. (see figure 2)

Additionally, if duty is below DCOFF, the motor direction can be made to be reverse if REVOPT is set to "1".

#### **Duty Cycle Invert.**

To create mirror image of speed curve, set Duty cycle invert bit to "1".

#### Minimum Duty Clamp.

Minimum speed can be clamped to a value to allow motor to run at defined low level speed. This is achieved by ignoring the duty cycle input if below the programmed MINDTY level.

Min Duty Clamp (%) = 100\*MINDTY/511

Therefore the minimum speed will be defined by:

MinSpeedClamp(RPM) = Slope\*MinDutyClamp+MINSPD

Setting MINDTY to 0 disables the function.

MINDTY=0..255



### Maximum Duty Clamp.

EEPROM variable DTYMAX defines a duty level at which the motor will change operation from closed loop curve. The change of operation would depend on MAXDTYOPT setting. If MAXDTYOP = 0, open loop operation will result, if MAXDTYOPT = 1 then operation will remain closed loop however the speed will be clamped at the value calculated by DTYMAX level.

4 bits are used for this setting at resolution of 1.6% to cover the range 76.5% to 100%.

Maximum Duty (%) = 100\*(511-MAXDTY\*8)/511

MAXDTY = 0..15; If MAXDTY=0 then function is disabled.

Hysteresis is needed to prevent motor from going back and forth between open and closed loop mode.

MAXDTYHYS = 0...15

 $Hys(\%) = (MAXDTYHYS+1)^*.4$ 

#### 50% Duty Option.

If bit DIR50 is set to 1, the motor direction can be controlled by duty cycle level. (see figure 3) For this setting, the motor enable and disable functions will be set by:

DCONnew = 50% +/- DCON DCOFFnew = 50% +/-DCOFF

Since the duty cycle reference changes from 100% scale to 50% scale. The slope of the curve is now 2X compared to normal (DIR50=0) setting. When duty changes to switch direction, the motor will coast for time programmed via TCOAST variable before attempting to startup in opposite direction. Care should be taken to minimize stress on the MOSFETS when switching direction.

**Dual Slope Option.** (see figure 3) Two different slopes can be selected by setting variable SLPSWDTY greater than 0.

Slope2 = (MAXSPEED-SLPSWRPM)/(100%-SLPSWDTY)

Slope1 = (SLPSWRPM - MINSPEED)/SLPSWDTY

#### **Resonance Option**. (see figure 3)

To avoid any issues with mechanical resonance at a particular speed band, variable RESWID & RESDTY are provided to allow skipping over a defined RPM and.

RESDTY: defines duty cycle that is center of band RESWID: defines width of band relative to center duty value

#### **Open Loop Maximum Limit**

When the speed curve is set to open loop mode it is possible to limit the speed to prevent fan speed overshoot. Rpm is monitored and the demand will be clamped at level that results in max limit.

OPNLPMAX variable has no effect in closed loop mode.



## **EEPROM MAP**

Note: refer to application note and user interface for additional detail.

| I2C | EE   | Bits  | Name      | Description                                  | Default Setting | Default Value |
|-----|------|-------|-----------|----------------------------------------------|-----------------|---------------|
| REG | ADDR |       |           | -                                            |                 | (decimal)     |
| 64  | 0    | 15:0  | Dev1      | Allegro Reserved                             | n/a             | n/a           |
| 65  | 1    | 15:0  | Dev1      | Allegro Reserved                             | n/a             | n/a           |
| 66  | 2    | 15:0  | Dev1      | Allegro Reserved                             | n/a             | n/a           |
| 67  | 3    | 15:0  | Dev1      | Allegro Reserved                             | n/a             | n/a           |
| 68  | 4    | 15:0  | Dev1      | Allegro Reserved                             | n/a             | n/a           |
| 69  | 5    | 15:0  | Dev1      | Allegro Reserved                             | n/a             | n/a           |
| 70  | 6    | 15:0  | Dev1      | Allegro Reserved                             | n/a             | n/a           |
| 71  | 7    | 15:0  | Dev1      | Allegro Reserved                             | n/a             | n/a           |
| 72  | 8    | 3:0   | MAXDTYCLP | Range= 100% to 76.5%, LSB=1.6%               | 0               | 0             |
|     |      | 7:4   | MAXDTYHYS | Range= 0 to 5.9%, LSB=.4%                    | 0               | 0             |
|     |      | 14:8  | MINDTYCLP | Range= Range=0 to 49.9% LSB=.78%             | 0               | 0             |
| 73  | 9    | 8:0   | STRTDMD   | LSB=VBBRNG/511                               | .8V             | 17            |
|     |      | 15:9  | DMDPOST   | Range=0 to 100%, LSB=.8%                     | 79.5%           | 202           |
| 74  | 10   | 7:0   | ALIGNT    | Range=0 to 20.4S LSB=100ms                   | .5S             | 63            |
|     |      | 15:8  | ASLOPE    | Range= 160ms to 40S                          | .16S            | 255           |
| 75  | 11   | 7:0   | STRTF     | Range=0 to 15.94Hz LSB=.0625mHz              | .19Hz           | 3             |
|     |      | 15:8  | ACCEL     | Range= 0 to 99.6 Hz/S LSB=.78                | 41.8Hz          | 107           |
| 76  | 12   | 7:0   | ACCELT    | Range=0 to 10.2S, LSB=40ms                   | 480ms           | 12            |
|     |      | 15:8  | MAXOFFDTY | Range=100% to 76.5% LSB=.4%                  | 100%            | 0             |
| 77  | 13   | 3:0   | DMDRMPAL  | Range=3.8 to 63.8ms/count, LSB=3.8           | 23.8ms/count    | 5             |
|     |      | 7:4   | DMDRMPAH  | Range=3.8 to 63.8ms/count, LSB=3.8           | 15.8 ms/count   | 3             |
|     |      | 11:8  | DMDRMPDL  | Range=3.8 to 63.8ms/count, LSB=3.8           | 27.8 ms/count   | 6             |
|     |      | 15:12 | DMDRMPDH  | Range=3.8 to 63.8ms/count, LSB=3.8           | 27.8 ms/count   | 6             |
| 78  | 14   | 8:0   | RESDTY    | Range = 0 to 100%, LSB=.2%                   | Disabled        | 0             |
|     |      |       | RESWID    | Range = 0 to 50%, LSB=.4%                    | n/a             | 0             |
| 79  | 15   | 7:0   | MAXSPD    | Maximum Electrical Frequency                 | 509hz           | 24            |
|     |      | 15:8  | TLOCK     | 0 to 25.5S                                   | 5S              | 50            |
| 80  | 16   | 7:0   | RDLOW     | Range=0 to 4095, LSB=16RPM                   | 0               | 0             |
|     |      | 15:8  | RDHIGH    | Range=0 to 4095, LSB=16RPM                   | 0               | 0             |
| 81  | 17   | 7:0   | RDBLK     | Range=0 to 25.5S, LSB=100ms                  | 0               | 0             |
|     |      | 11:8  | RDDLY     | Range=0 to 15S, LSB=1S                       | 0               | 0             |
|     |      | 12    | Unused    |                                              |                 |               |
|     |      | 13    | DITHDT    | 0=1.28ms 1=5.12ms/step                       | 0               | 0             |
|     |      | 14    | DITHSTP   | 0=16steps 1=32 steps                         | 0               | 0             |
|     |      | 15    | DITHENB   | 1=Enable                                     | disabled        | 0             |
| 82  | 18   | 11:0  | PHASLP    | Calculated Slope for Linear Phase<br>Advance | 12.7deg         | 98            |
|     |      | 15:12 | SOWLIN    | Window Width With Linear Phase Advance       | 28.2deg         | 15            |
| 83  | 19   | 0     | PCDLY     | Post Coast delay 0=100ms 1=500ms             | 500ms           | 1             |
|     |      | 1     | STBYDIS   | Standby Mode 0=Enable 1=Disable              | 1               | 1             |
|     |      | 3:2   | PWMF      | Motor PWM Selection                          | 24/48kHz        | 2             |
|     |      | 5:4   | BEMFFILT  | Bemf comp filter                             | 4us             | 0             |
|     |      | 6     | TCENB     | Temperature Compensation 0: Off 1:On         | 0               | 0             |
|     |      | 8:7   | WINDM     | Windmill Option                              | 0               | 0             |
|     |      | 12:9  | SPDCLP    | Minimum clamp is speed control mode          | 4.6%            | 2             |
|     |      | 14:13 | PHARNG    | 0: >32krpm 1:16k-32k 2: 8k-16k 3:<8k         | 8k-16k          | 2             |
|     |      | 15    | OCLOPT    | 0=Cycle by cycle 1: Reduce demand            | 1               | 1             |



Three Phase Sinusoidal Sensorless Fan Controller

EEPROM MAP (Continued)

| I2C | EE   | Bits  | Name      | Description                                                         | Default Setting | Default Value |
|-----|------|-------|-----------|---------------------------------------------------------------------|-----------------|---------------|
| REG | ADDR |       |           |                                                                     |                 | (decimal)     |
| 84  |      | 0     | CL        | Speed Control Mode 0=OpenLoop 1=Closed                              | Enabled         | 1             |
|     |      | 1     | PHA       | Running Mode 0=Auto 1=Linear Phase Advance                          | 0               | 0             |
|     |      | 2     | RDOPT     | Rd Function Mode select                                             | 0               | 0             |
|     |      | 3     | SPDSEL    | Speed Control Select 0=PWM Duty, 1=Analog                           | 0               | 0             |
|     |      | 6:4   | PP        | Pole Pair = PP+1                                                    | 2pp             | 1             |
|     |      | 7     | NOCOAST   | 1=NOCOAST, 0=Coast                                                  | Nocoast         | 1             |
|     | 20   | 8     | ALIGNMODE | 0=Align 1=One Cycle                                                 | Align           | 0             |
|     |      | 9     | QCKSTRT   | 0=Disable 1= Enable                                                 | disable         | 0             |
|     |      | 10    | OVPOPT    | 0=Disable 1:lock detect                                             | Тьоск           | 1             |
|     |      | 11    | FGSTRT    | 0=FG disabled during Startup, 1=FG Enabled                          | 0               | 0             |
|     |      | 13:12 | BEMFHYS   | Bemf Hys Level for Startup                                          | 40mV            | 1             |
|     |      | 14    | SOWAUTO   | Initial Value of Window                                             | 21°             | 1             |
|     |      | 15    | OCPOPT    | 0=Reset after T <sub>LOCK</sub> 1= After PWM on/off                 | TLOCK           | 0             |
| 85  | 21   | 7:0   | KP        | Closed Loop                                                         | 16              | 16            |
|     | 21   | 15:8  | KI        | Closed Loop                                                         | 2               | 2             |
| 86  |      | 7:0   | SLPSWDTY  | Duty at which slope changes                                         | Disabled        | 0             |
|     | 22   | 14:8  | TRAPSWDTY | Duty to switch to trap                                              | Disabled        | 0             |
|     |      | 15    | TRAPENB   | 1=Enable                                                            | Disabled        | 0             |
| 87  | 23   | 14:0  | SLPSWRPM  | Range 0 to 16384, LSB=1Rpm                                          | Disabled        | 0             |
| 88  | 24   | 13:0  | SPDSLP2   | Calculated Slope                                                    | 0               | 0             |
|     | 24   | 15:14 | Unused    |                                                                     |                 |               |
| 89  |      | 0     | DUTYINV   | 0=Normal, 1=Invert                                                  | 0               | 0             |
|     |      | 1     | MAXDTYOPT | 0=Run at Open Loop, 1=Run at MAXDTYCLP                              | 0               | 0             |
|     |      | 2     | ONOFFCNTL | 0=Normal hysteretic on/off , 1= Motor Off between<br>DC_ON & DC_OFF | 0               | 0             |
|     | 25   | 3     | DIR50     | 1=enable direction change based on 50% duty                         | 0               | 0             |
|     |      | 4     | REVOPT    | 1= reverse when duty < dc_off & ONOFFCNTL=1                         | 0               | 0             |
|     |      | 5     | BRKOFF    | 0=Coast 1=Brake when PWM off state after t <sub>COAST</sub>         | 0               | 0             |
|     |      | 6     | n/a       | Set bit to 0                                                        | 0               | 0             |
|     |      | 8:7   | PIOPT     | 0=1x 1=2x 2=4x 4=8x                                                 | 0               | 0             |
| 90  |      | 7:0   | TCOAST    | Coast time for brake or dir change                                  | 3S              | 30            |
|     | 26   | 15:8  | OPNLPMAX  | Max speed limit for open loop mode                                  | 30208           | 118           |
| 91  |      | 11:0  | MINSPD    | Minimum Speed (y intercept)                                         | 1000            | 1000          |
|     | 27   | 13:12 | OVPSEL    | 18/28/38/48V                                                        | 28              | 1             |
|     |      | 14    | VBBRNG    | 0=24V 1=48V                                                         | 24              | 0             |
| 92  | 28   | 13:0  | SPDSLP1   | Calculated Slope of Speed Curve                                     | 1378            | 1378          |
| 93  |      | 7:0   | DCON      | Range=0 to 49.9% LSB=.2%                                            | 10%             | 97            |
|     | 29   | 15:8  | DCOFF     | Range=0 to 49.9% LSB=.2%                                            | 7.4%            | 79            |
| 94  |      | 3:0   | DT        | Deadtime                                                            | 480nS           | 10            |
|     |      | 4     | VDSTH     | OCP VDS Threshold 0=1V 1=2V                                         | 1V              | 0             |
|     | 30   | 5     | OCPDIS    | OCP Disable 0=Enabled 1=Disabled                                    | Enabled         | 0             |
|     |      | 7:6   | n/a       | Allegro Reserved                                                    | n/a             | 0             |
|     |      | 15:8  | n/a       | Allegro Reserved                                                    | n/a             | 89            |
| 95  | 31   | 15:0  | n/a       | Allegro Reserved                                                    | n/a             | n/a           |



### Serial Port Control Option

Normally the IC is controlled by duty cycle input and uses the EEPROM data that is stored to create the speed curve profile (as show in Figure xx). However, it is possible to use direct serial port control to avoid programming EEPROM. When using direct control, the input duty cycle command is replaced by writing to a 9 bit number to register 165.

Example: REGADDR[data]: (in decimal) 165[511] → Duty=100% 165[102] → Duty=102/511=20%

Upon power up, IC defaults to duty cycle input mode. To use serial port mode, the internal registers should be programmed before turning the part on. The sequence to use serial port mode is:

- 1) Drive FG & SPD pins low\*\*
- 2) Power up IC
- 3) Program registers for parameter setting that correspond to each of the EEPROM memory locations.
  - a. REGADDR = 64 + EEPROM ADDR.
  - b. Program register addresses 65 to 84 corresponding to EEPROM addresses 1 to 20
  - It may be helpful to use the GUI text file to help define the hex data for each of the EEPROM C. addresses.
- 4) Write to register 165 to start motor

\*\*Note: If SPD is not driven low before power up, motor will try to start immediately as the default high value will demand 100% on signal.



### Serial Port.

The A5931 uses standard fast mode I2C serial port format to program the EEPROM or to control the IC speed serially. The SPD pin functions as the clock (SCL) input, and the FG pin is the data line (SDA). No special sequence is needed to begin transferring data. If the motor is running the FG may pull then data line low while trying to initialize into serial port mode. Once an I2C command is sent the SPD input is ignored, and the motor will turn off as if a PWM duty command of 0% was sent.

The 5931 7 bit slave address is 0x55).

### I<sup>2</sup>C Timing Diagrams.





**Figure 5. Start and Stop conditions** 





#### Write command:

- 1) Start Condition
- 2) 7 bit I2C Slave Address (Device ID) 1010101, R/W Bit = 0
- 3) Internal Register Address
- 4) 2 data bytes, MSB first
- 5) Stop Condition



Figure 8: Write Command



### **Read command: Two Step Process**

- Start Condition 1)
- 2) 7 bit I2C Slave Address (Device ID) 1010101, R/W Bit = 0
- 3) Internal Register Address to be read
- 4) Stop Condition
- 5) Start Condition
- 6) 7 bit I2C Slave Address (Device ID) 1010101, R/W Bit = 1
- 7) Read 2 data bytes
- 8) Stop Condition



**Figure 9: Read Command** 



**Programming EEPROM**. The A5931 contains 24words of 16 bit length. The EEPROM is controlled with the following i2c registers. Refer to application note for EEPROM definition.

| 1 | EPROM Control – Register 161: Used to control programming of EEPROM |    |    |    |    |    |   |   |   |   |   |   |    |    |    |    |
|---|---------------------------------------------------------------------|----|----|----|----|----|---|---|---|---|---|---|----|----|----|----|
|   | 15                                                                  | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3  | 2  | 1  | 0  |
|   | 0                                                                   | 0  | 0  | 0  | 0  | 0  | 0 | 0 | 0 | 0 | 0 | 0 | RD | WR | ER | EN |

|                  |                        |               |          |             | <pre>/ ^ · · ·</pre> |
|------------------|------------------------|---------------|----------|-------------|----------------------|
| EEPROM Control - | - Register <b>16</b> 1 | nt hazl I · I | control  | programming | of FEPROM            |
|                  |                        | 1. 00000 10   | 00110101 | programming |                      |

| Bit  | Name | Description                                               |
|------|------|-----------------------------------------------------------|
| 0    | EN   | Set EEProm Voltage required for Writing or Erasing        |
| 1    | ER   | Sets Mode to Erase                                        |
| 2    | WR   | Sets Mode to Write                                        |
| 3    | RD   | Sets Mode to Read                                         |
| 15:4 | n/a  | Do not use, always set to Zero during programming process |

#### EEPROM Address- Register 162: Used to set the EEPROM address to be altered

| 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4         | 3 | 2 | 1 | 0 |
|----|----|----|----|----|----|---|---|---|---|---|-----------|---|---|---|---|
| 0  | 0  | 0  | 0  | 0  | 0  | 0 | 0 | 0 | 0 | 0 | eeADDRESS |   |   |   |   |

| Bit  | Name      | Description                                                                                                                         |  |  |  |
|------|-----------|-------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| 0    | eeADDRESS | Used to specify EEPROM address to be changed. There are 20 addresses. Do not change address 0 or 19 as these are factory controlled |  |  |  |
| 15:5 | n/a       | Do not use always set to Zero during programming process                                                                            |  |  |  |

### EEPROM DataIn - Register 163: Used to set the EEPROM new data to be programmed

| 15       | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|----------|----|----|----|----|----|---|---|---|---|---|---|---|---|---|---|
| eeDATAin |    |    |    |    |    |   |   |   |   |   |   |   |   |   |   |

| Bit  | Name                                                        | Description |  |
|------|-------------------------------------------------------------|-------------|--|
| 15:0 | eeDATAin Used to specify the new EEPROM data to be changed. |             |  |



#### EEPROM DataOUT - Register 164: Used for read operations. 15 14 13 12 11 10 9 7 6 5 4 3 2 1 8 0 eeDATAout

| Bit  | Name      | Description                                                       |
|------|-----------|-------------------------------------------------------------------|
| 15:0 | eeDATAout | Used to readback EEPROM data from address defined in register 162 |

There are 3 basic commands, Read, Erase, and Write. To change the contents of a memory location, the word must be first erased. The EEPROM programming process (writing or erasing) takes 10ms per word. Each word must be written individually.

Example #1: Write EEPROM address 5 to 261 (hex=0x0105)

#### 1) Erase the word

|          | I2c Write REGADDR[Data]                                  | ; comment                                                                                                                                       |
|----------|----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| а.       | 162[5]                                                   | ; set EEPROM address to erase                                                                                                                   |
| b.       | 163[0]                                                   | ; set 0000 as Data In                                                                                                                           |
| С.       | 161[3]                                                   | ; set control to Erase and Voltage High                                                                                                         |
| d.       | Wait 15ms                                                | ; requires 15ms High Voltage Pulse to Write                                                                                                     |
| e.       | 161[0]                                                   | ; clear Voltage                                                                                                                                 |
| Write tl | he new data                                              |                                                                                                                                                 |
| a.       | 162[5]                                                   | ; set EEPROM address to write                                                                                                                   |
| b.       | 163[261]                                                 | ; set Data In = 261                                                                                                                             |
| с.       | 161[5]                                                   | ; set control to Write and Set Voltage High                                                                                                     |
| d.       | Wait 15ms                                                | ; requires 15ms High Voltage Pulse to Write                                                                                                     |
| e.       | 161[5]                                                   | ; clear Voltage                                                                                                                                 |
|          | b.<br>c.<br>d.<br>e.<br>Write tl<br>a.<br>b.<br>c.<br>d. | a. 162[5]<br>b. 163[0]<br>c. 161[3]<br>d. Wait 15ms<br>e. 161[0]<br>Write the new data<br>a. 162[5]<br>b. 163[261]<br>c. 161[5]<br>d. Wait 15ms |

Example #2 Read address 5 to confirm correct data properly programmed.

1) Read the word

a. 5[i2c read] ; read register 5; this will be contents of EEPROM



# **Pin Diagrams**















### Package ES, 24 pin eQFN



For Reference Only; not for tooling use (reference JEDEC MO-220WGGD) Dimensions in millimeters

Exact case and lead configuration at supplier discretion within limits shown

A Terminal #1 mark area

B Exposed thermal pad (reference only, terminal #1 identifier appearance at supplier discretion)

Reference land pattern layout (reference IPC7351 QFN50P400X400X80-25W6M) All pads a minimum of 0.20 mm from all adjacent pads; adjust as necessary to meet application process requirements and PCB layout tolerances; when mounting on a multilayer PCB, thermal vias at the exposed thermal pad land can improve thermal dissipation (reference EIA/JEDEC Standard JESD51-5)

Coplanarity includes exposed thermal pad and terminals

Package LP, 24 pin TSSOP



