

Non-Synchronous PWM Boost Controller

General Description

The FP5138 is a boost switching regulator controller IC for battery-used applications. The FP5138 includes a totem-pole output stage for driving NPN transistor or N-MOS, high precision reference (0.5V) for comparing output voltage by feedback amplifier, precision maximum duty cycle control, programmable soft start with short circuit protection function and operating mode control between operation and standby mode.

Features

- Wide Supply Voltage Operating Range: 1.8 to 15V
- Reference Voltage Precision: 2%
- > Low Current Consumption: 5.5mA in Operation Mode
- > Low Current Consumption: 1µA in Standby Mode
- > High Oscillator Frequency: 1MHz max.
- Programmable Soft Start Function (SS)
- Short Circuit Protection Function (SCP)
- > Totem-Pole Output with Adjustable ON / OFF Current (for NPN Transistors or n-Channel MOSFET)
- Logic Level Control Stand-by Mode Function
- Package:,SOP-8L and TSSOP-8L

Applications

- Digital Camera
- PDA
- Portable Equipment

Function Block Diagram

Pin Descriptions

SOP-8L		
	Top View	
FB 🗖		8 COMP
SCP 2	9 9	7 OSC
V _{cc} 3	P51 -a-8	6 GND
BR / CTL 📑	38 6L	5 OUT

Name No. 1/0 Description FB 1 T Error Amplifier Inverting Input Soft Start and SCP Function SCP 2 T Connect a Capacitor to this pin 3 Ρ Vcc IC power supply BR / CTL 4 Output Current Setting and Control Т OUT 5 Totem-Pole Output 0 GND 6 Ρ IC Ground Oscillator Output: Connect Capacitor and OSC 7 L Resistor to this pin for Frequency Adjustment COMP 8 0 Error Amplifier Compensation Output

TSSOP-8L

Marking Information

SOP-8L FP5138 Halogen Free Lot Number Mass Production Version Per-Half Month Year FP5138 FF5138 FF64 Halogen Free Lot Number Halogen Free Lot Number Halogen Free Per-Half Month Year

Halogen Free: Halogen free product indicator Lot Number: Wafer lot number's last two digits

For Example: 132386TB → 86

Internal ID: Internal Identification Code n

Per-Half Month: Production period indicated in half month time unit

For Example: January \rightarrow A (Front Half Month), B (Last Half Month)

February \rightarrow C(Front Half Month), D(Last Half Month)

Year: Production year's last digit

Ordering Information

Part Number	Operating Temperature	Package	MOQ	Description
FP5138DR-LF	-10°C ~ +85°C	SOP-8L	2500EA	Tape & Reel
FP5138BWR-LF	-10°C ~ +85°C	TSSOP-8L	2500EA	Tape & Reel

Absolute Maximum Ratings

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Power Supply Voltage	V _{IN}				15	V
Output Source Current			-50			mA
Output Sink Current					50	mA
		SOP-8L, T _A ≦+25℃			570	mW
Allowable Power Dissipation		TSSOP-8L, T _A ≦+25℃			400	mW
Operating Temperature			-10		+85	°C
Storage Temperature			-55		+125	°C
Junction Breakdown Temperature	TJ				+125	°C
		SOP-8L, soldering, 10 sec			+260	C°
Lead Temperature		TSSOP-8L, soldering, 10 sec			+260	°C

IR Re-flow Soldering Curve

This datasheet contains new product information. Feeling Technology reserves the rights to modify the product specification without notice. No liability is assumed as a result of the use of this product. No rights under any patent accompany the sales of the product.

Recommended Operating Conditions

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Supply Voltage			1.8		15	V
Operating Temperature			-10		+85	°C

DC Electrical Characteristics (V_{CC} = +2V, T_A =25°C, unless otherwise noted)

Parameter	Symbol	Test Conditions	Min.	Тур.	Max.	Unit
Under Voltage Lock-Out Section	(UVLO)		•			
Low Threshold Voltage	V _{LOW}				0.9	V
Upper Threshold Voltage	VUPPER		1.1	1.3	1.5	V
Soft Start Section (SS)		1				
Input Source Current	I _{SS}	V _{SCP} = 0V	-1.5	-1.0	-0.7	μA
Soft Start Threshold Voltage	V _{SST}		0.8	0.9	1.0	V
Short Circuit Protection Section	(SCP)		I			
Input Source Current	I _{SCP}	V _{SCP} = 0V	-1.5	-1.0	-0.7	μA
SCP Threshold Voltage	V _{SCP}		0.7	0.8	0.9	V
Oscillator Section			- <u>-</u>		•	
Oscillation Frequency	f	R _T =3.0KΩ, C _T =270pF	400	500	600	KHz
Frequency Change With Voltage	Δf / ΔV	V _{CC} =2V to 15V		2	10	%
Frequency Change With Temperature	Δf / ΔT	$T_A = 0^{\circ}C$ to $85^{\circ}C$		5		%
Idle Period Adjustment Section						
Maximum Duty Cycle	T _{DUTY}	R _T =3.0kΩ, C _T =270pF, V _{FB} =0.8V		75		%
Maximum Duty Cycle Change With Temperature	Δ T _{DUTY} / ΔT	T _A = -10°C to 85°C		10		%
Total Device Section		·				
Standby Current	ISTANDBY	Pin 4 is open or =V _{CC}			1	μA
Average Current Consumption	I _{AVE}	R _B =390Ω, V _{CC} =0~15V		5.0	10	mA
Error Amplifier Section						
Input Threshold Voltage	V _{FB}	V _{COMP} =450mV	490	500	510	mV
V_T Change With Voltage	ΔV _{FB} / ΔV	V_{CC} =2V to 15V		5	20	mV
V_T Change With Temperature	ΔV _{FB} / ΔT	T _A = -10°C to 85°C		1		%
Input Bias Current	I _B		-1.0	-0.2	1.0	μA
Voltage Gain	Av			100		V/V
Frequency Bandwidth	BW	A _V =0 dB		6		MHz
Output Voltage Swing Positive	V _{POS}		0.78	0.87		V
Output Voltage Swing Negative	V _{NEG}			0.05	0.2	V
Output Source Current	ISOURCE	V _{COMP} =450 mV		-40	-24	μA
Output Sink Current	I _{SINK}	V _{COMP} =450 mV	24	40		μA

Parameter	Symbol	Test Conditions	Min.	Тур.	Max.	Unit
Output Section						•
	V _{OH1}	R _B =390Ω, I _O =-15mA	1.0	1.2		V
Output High Voltage	V _{OH2}	R _B =750Ω, I _O =-10mA, V _{CC} = 1.8V	0.8	1.0		V
Output Saturation Voltage	V _{OL1}	R _B =390Ω, I _O =15mA		0.1	0.2	V
Output Saturation Voltage	V _{OL2}	R _B =750Ω, I _O =10mA, V _{CC} = 1.8V		0.1	0.2	V
Output Source Current	IOSOURCE	R _B =390Ω, Vo=0.9V		-40	-20	mA
Output Sink Current	I _{OSINK}	R _B =390Ω, Vo=0.3V	30	40	-	mA
Internal Pull-Down Resistor	Ro		20	30	40	kΩ
Output Current Setting / Control	section					
Pin Voltage	V _{BR}	R _B =390Ω	0.15	0.22	0.3	V
Output Current Setting Resistance	R _B		300	390	5000	Ω
Input Off Condition	IOFF		-20		0	μA
Input On Condition	I _{ON}				-45	μA
Pin Current Range	I _{BR}		-1.8		-0.1	mA

Typical Operating Characteristics

(V_{CC}=2V, T_A = 25°C, unless otherwise noted)

This datasheet contains new product information. Feeling Technology reserves the rights to modify the product specification without notice. No liability is assumed as a result of the use of this product. No rights under any patent accompany the sales of the product.

Function Description

Voltage Reference

A 1.25V regulator operating from V_{CC} is used to power the FP5138 internal circuitry. An internal resistive divider provides 0.5V reference for the error amplifier, Soft-start (typ. 0.9V) and SCP (typ. 0.8V) circuits.

Error Amplifier

The error amplifier compares a sample of the DC-DC converter output voltage to the 0.5V reference and generates an error signal for the PWM comparator. Output voltage of DC-DC converter is setting with the resistor divider using the following expression (see figure12):

.Figure 12 Error Amplifier with Feedback resistance divider

Oscillator

The oscillator frequency can be set from 20KHz to 1MHz by connecting a resistor and a capacitor at OSC pin of FP5138 to ground. The oscillator frequency can be determined by using the graph shown in Figure 9.

The oscillator output is a sawtooth wave with a minimum value of approximately 0.1V and a maximum value of approximately 0.8V. The PWM comparator compares the oscillator voltage with error amplifier output voltage, internal maximum duty control voltage (typ. 0.6V) and soft start setting voltage. When the sawtooth wave voltage is lower than all of above three-output voltage, the output of FP5138 is high (Turn on external NPN transistor or NMOS).

This datasheet contains new product information. Feeling Technology reserves the rights to modify the product specification without notice. No liability is assumed as a result of the use of this product. No rights under any patent accompany the sales of the product.

Under Voltage Lockout (UVLO)

The under voltage lockout circuits turn the output off and whenever the supply voltage drops too low (approximately 0.9V at 25°C) for proper operation. A hysteresis voltage of 200mV eliminates false triggering on noise and chattering.

Soft Start/ Short-circuit protection (SS / SCP)

The soft start is functional after power on. The interval of soft start time is determined by a capacitor connected to SCP pin (pin 2). When soft start function finished, the internal soft start voltage is setting high, but external SCP pin is setting low in order to change to short circuit detection / protection function.

The time of soft start is:

 $Tss = 0.35 \times C[\mu F]$

The short circuit protection is functional due to a heavy loading drop and output of error amplifier (COMP pin) is maintain larger than V_{POS} (typ. 0.9V), the capacitor is charged until SCP threshold voltage (typ. 0.8V), then FP5138 output is disable (internal pull-low) and the capacitor is discharged to low.

The time of short circuit protection is:

 $\mathsf{Tscp} = 0.8 \times C[\mu\mathsf{F}]$

Output transistor

The FP5138 has a totem-pole transistor with a 40mA source/sink current rating to drive an external NPN transistor or NMOS directly. The driving current capability depends on a resistor R that is connected to BR/CTL pin (Pin4) of FP5138. (see figure 13)

BR/CTL pin can also use to control the output of FP5138 for disable or enable function of system.

Control Pin	Q1	BR/CTL Pin	Output Transistor Function	Mode
Low	Off	Open	Disable	Stand-by
High	On	Bias Current	Enable	Operation

Timing Waveform

FP5138 Timing Diagram

Application Information

Figure 15 DC 2.5V~DC6V to DC3.3V SEPIC Regulator

This datasheet contains new product information. Feeling Technology reserves the rights to modify the product specification without notice. No liability is assumed as a result of the use of this product. No rights under any patent accompany the sales of the product.

Figure 16 Charge Pump DC-DC Converter Circuit

Figure 17 Flyback Multi-Output DC-DC Converter Circuit

This datasheet contains new product information. Feeling Technology reserves the rights to modify the product specification without notice. No liability is assumed as a result of the use of this product. No rights under any patent accompany the sales of the product.

Figure 18 Flyback Multi-output DC-DC Converter Circuits

Package Outline

SOP-8L

UNIT: mm

FP5138

Symbols	Min. (mm)	Max. (mm)
А	1.346	1.752
A1	0.101	0.254
A2	1.092	1.498
D	4.800	4.978
E	3.810	3.987
Н	5.791	6.197
L	0.406	1.270
θ°	0°	8°

Notes:

- 1. Package dimensions are in compliance with JEDEC outline: MS-012 AA.
- 2. Dimension "D" does not include molding flash, protrusions or gate burrs.
- 3. Dimension "E" does not include inter-lead flash or protrusions.

This datasheet contains new product information. Feeling Technology reserves the rights to modify the product specification without notice. No liability is assumed as a result of the use of this product. No rights under any patent accompany the sales of the product.

TSSOP-8L

UNIT: mm

• • •	/ >	/ >
Symbols	Min. (mm)	Max. (mm)
A		1.200
A1	0.050	0.150
A2	0.960	1.060
D	2.900	3.100
E	6.4	00 BSC
E1	4.300	4.500
L	0.450	0.750
θ°	0°	8°

Notes:

- 1. Package dimensions are in compliance with JEDEC outline: MO-153 AA.
- 2. Dimension "D" does not include molding flash, protrusions or gate burrs.
- 3. Dimension "E1" does not include inter-lead flash or protrusions

This datasheet contains new product information. Feeling Technology reserves the rights to modify the product specification without notice. No liability is assumed as a result of the use of this product. No rights under any patent accompany the sales of the product.